Extracellular taurine induces angiogenesis by activating ERK-, Akt-, and FAK-dependent signal pathways.
نویسندگان
چکیده
Taurine, a non essential sulfur-containing amino acid, plays a critical role in cardiovascular functions. We here examined the effect of taurine on angiogenesis and its underlying signal pathway. Taurine treatment increased angiogenesis in vitro and in vivo, which was followed by activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, MEK/ERK, and Src/FAK signaling pathways. Further, taurine promoted endothelial cell cycle progression to the S and G2/M phases by up-regulating the positive cell cycle proteins, particularly cyclins D1 and B, as well as down-regulating the negative cell cycle proteins, p53 and p21(WAF1/CIP1), resulting in Rb phosphorylation. This angiogenic event was inhibited by inhibitors of PI3K and MEK. In addition, a PI3K inhibitor blocked the activation of Akt and ERK, while Akt knockdown did not affect taurine-induced ERK activation, indicating that PI3K is an upstream mediator of both MEK and Akt. Taurine-induced endothelial cell migration was suppressed by Src inhibitor, but not by other inhibitors, suggesting that the increase in cell migration is regulated by Src-dependent pathway. Moreover, inhibition of cellular taurine uptake by β-alanine and taurine transporter knockdown promoted taurine-induced cell proliferation, ERK and Akt activation, and in vivo angiogenesis, suggesting that extracellular taurine induces angiogenesis. However, taurine did not induce vascular inflammation and permeability in vitro and in vivo. These data demonstrate that extracellular taurine promotes angiogenesis by Akt- and ERK-dependent cell cycle progression and Src/FAK-mediated cell migration without inducing vascular inflammation, indicating that it is potential use for the treatment of vascular dysfunction-associated human diseases.
منابع مشابه
CXCL16 induces angiogenesis in autocrine signaling pathway involving hypoxia-inducible factor 1α in human umbilical vein endothelial cells.
Chemokine (C-X-C motif) ligand 16 (CXCL16) is a new angiogenic factor inducing angiogenesis via extracellular signal-regulated kinases pathway. To further understand the molecular mechanism underlying CXCL16‑induced angiogenesis, we explored involvement of other relevant pathways in CXCL16-induced angiogenesis. In the present study, we investigated the mechanisms underlying CXCL16-induced angio...
متن کاملExtracellular matrix secreted by senescent fibroblasts induced by UVB promotes cell proliferation in HaCaT cells through PI3K/AKT and ERK signaling pathways.
Chronic exposure to solar ultraviolet radiation (UV) induces photoaging, and ultimately photocarcinogenesis. Senescent human skin fibroblasts (HSFs) in UVB stress-induced premature senescence (UVB-SIPS) share a similar extracellular matrix (ECM) phenotype with other types of senescent fibroblast. ECM from senescent fibroblasts induced by a variety of stresses has been shown to promote preneopla...
متن کاملVascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1.
Prostaglandin E(2) (PGE(2)) has been implicated as an inducer of angiogenesis in human colon cancer. Here, we demonstrate that PGE(2) exposure induces the expression of vascular endothelial growth factor (VEGF) mRNA in HCT116 human colon carcinoma cells that is mediated by the transcriptional activator hypoxia-inducible factor 1 (HIF-1). PGE(2) exposure induces the phosphorylation of extracellu...
متن کاملDifferential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis
Antagonists of alphavbeta3 and alphavbeta5 disrupt angiogenesis in response to bFGF and VEGF, respectively. Here, we show that these alphav integrins differentially contribute to sustained Ras-extracellular signal-related kinase (Ras-ERK) signaling in blood vessels, a requirement for endothelial cell survival and angiogenesis. Inhibition of FAK or alphavbeta5 disrupted VEGF-mediated Ras and c-R...
متن کاملFractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways.
Fractalkine (FKN) has been implicated in modulation of angiogenesis and vascular inflammation, but the underlying mechanism has not been elucidated. We have investigated the molecular mechanism by which FKN regulates angiogenesis. We found that recombinant FKN increases in vitro proliferation, migration, and tube formation of human umbilical vein endothelial cells and stimulates in vivo angioge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmacology
دوره 674 2-3 شماره
صفحات -
تاریخ انتشار 2012